Creado: 19.06.2014

Consultoría, Asesoría y Servicios en Medio Ambiente.

1. Énfasis Ecosistema Acuáticos.
2. Declaraciones de Impacto Ambiental (DIAs) de Proyectos de Inversión.

more
Creado: 19.06.2014

Instrumentación, Estudios y Servicios Oceanográficos

  1. Perfiles in situ con CTD-O : Perfiles continuos en la columna de agua de Profundidad (o Presión), Temperatura, Salinidad (o Conductividad), Sigma-t y Oxígeno Disuelto hasta los 600 mts. de profundidad con instrumentos CTD-O plus 19, Marca Sea Bird Electronics, Inc. Énfasis en Oxígeno Disuelto expresado en: mg/L, mL/l, % de saturación. Cálculo del Apparent Oxygen Utilization (AOU).
more
Categoría de nivel principal o raíz: Servicios
Creado: 07.10.2014

Plancton Andino desde sus inicios se ha concentrado en estudiar aspectos oceanográficos de fiordos y canales de Chile, y es por ello que se obtiene, procesa y visualiza  información de fitoplancton, zooplancton, bentos y perfiles de CTD-O, clorofila  entre otras variables de interés.

Papers de interés en Fiordos Chilenos:

Iriarte, J. L., León-Muñoz, J., Marcé, R., Clément, A., & Lara, C. 2016. Influence of seasonal freshwater streamflow regimes on phytoplankton blooms in a Patagonian fjord.

Mariela A. Yevenes, Nelson A. Lagos, Laura Farías, Cristian A. Vargas. 2019. Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia): Implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption.  Science of The Total Environment, Volume 669, 2019, Pages 49-61, ISSN 0048-9697,   https://doi.org/10.1016/j.scitotenv.2019.03.037   http://www.sciencedirect.com/science/article/pii/S0048969719310150

Abstract:

This study investigates the immediate and mid-term effects of the biogeochemical variables input into the Reloncaví fjord (41°40′S; 72°23′O) as a result of the eruption of Calbuco volcano. Reloncaví is an estuarine system supporting one of the largest mussels farming production within Northern Chilean-Patagonia. Field-surveys were conducted immediately after the volcanic eruption (23–30 April 2015), one month (May 2015), and five months posterior to the event (September 2015). Water samples were collected from three stations along the fjord to determine greenhouse gases [GHG: methane (CH4), nitrous oxide (N2O)], nutrients [NO3−, NO2−, PO43−, Si(OH)4, sulphate (SO42−)], and carbonate systems parameters [total pH (pHT), temperature, salinity, dissolved oxygen (O2), and total alkalinity (AT)]. Additionally, the impact of physicochemical changes in the water column on juveniles of the produced Chilean blue mussel, Mytilus chilensis, was also studied. Following the eruption, a large phytoplankton bloom led to an increase in pHT, due to the uptake of dissolved-inorganic carbon in photic waters, potentially associated with the runoff of continental soil covered in volcanic ash. Indeed, high surface SO42− and GHG were observed to be associated with river discharges. No direct evidence of the eruption was observed within the carbonate system. Notwithstanding, a vertical pattern was observed, with an undersaturation of aragonite (ΩAr < 1) both in brackish surface (<3 m) and deep waters (>10 m), and saturated values in subsurface waters (3 to 7 m). Simultaneously, juvenile mussel shells showed maximized length and weight at 4 m depth. Results suggest a localized impact of the volcanic eruption on surface GHG, nutrients and short-term effects on the carbonate system. Optimal conditions for mussel calcification were identified within a subsurface refuge in the fjord. These specific attributes can be integrated into adaptation strategies by the mussel aquaculture industry to confront ocean acidification and changing runoff conditions.
Keywords: Chilean Patagonian Fjord; Carbonates system; Nutrients; Mussel farming; Volcanic event


El avance científico en los últimos años ha sido notable, especialmente con las publicaciones del grupo COPAS de la Universidades de Concepción y Austral de Chile como aquellas investigaciones de los cruceros CIMAR-FIORDOS y las publicaciones de la Universidad Católica de Valparaíso, entre otras.

Plancton Andino también se ha hecho parte de este avance y posee información de perfiles de CTDOs, Marca SeaBird Electronics Inc., Modelo 19 plus, datos de gran parte de la X y XI región.
Además, se han efectuado perfiles de Fluorometría para medir concentración de clorofila a y Backscattering, con sensor Eco-Triplet, WetLabs, acoplado con un sensor de presión calibrado en Oregón en fabrica. El backscattering se ha medido en 2 longitudes de onda con el objeto de analizar las propiedades bio-ópticas inherentes de la columna de agua.

 

Categoría de nivel principal o raíz: Servicios
Creado: 07.10.2014

El fitoplancton es un conjunto de células microscópicas, mayoritariamente foto-autótrofas, a la deriva del movimiento del agua en la capa fótica. Por tanto, utilizan el espectro del visible, es decir entre 350 a 700 nm de longitud de onda de la radiación solar para la fotosíntesis, mecanismo bio-químico básico, en el cual la clorofila a, molécula ubicada en los cloroplastos, en celulas eucarionticas, absorbe los fotones, genera la fotolisis y oxidación del agua, un flujo de electrones, niveles energéticos que finalmente se usan en la síntesis de hidratos de carbono, a partir de la incorporación biológica del CO2.

Aspectos biológicos, ecológicos, evolutivos y oceanográficos del fitoplancton son fundamentales para entender su dinámica, crecimiento y metabolismo, en los ecosistemas acuáticos.

Coined en 1897 define el fitoplancton en forma muy adecuada.... Coined in 1897, the term “phytoplankton” describes a diverse, polyphyletic group of mostly single-celled photosynthetic organisms that drift with the currents in marine and fresh waters (IN: Falkowski et al 2004).

En mayo del 2015 se efectuó una visita a los laboratorios del Dr. Rafael Kudela de la UCSC y al Dr. Ricardo Letelier en Corvallis, Oregon State University,  con quienes compartimos visiones en relación a las Floraciones de Algas Nocivas (FAN) en el Oceano Pacifico.

Referencias:

Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., & Taylor, F. J. R. (2004). The Evolution of Modern Eukaryotic Phytoplankton. Science, 305(5682), 354–360. Retrieved from https://science.sciencemag.org/content/305/5682/354?ijkey=3fa74f674a3c1d4b6d1399fb1df263a2962134d4&keytype2=tf_ipsecsha

IN: Falkowski, P G; J. A. Raven. Aquatic Photosynthesis. Blackwell Scientific, Oxford, 1997. p. 375. Google Scholar